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2012 AFOSR SPRING REVIEW 
        

        

BRIEF DESCRIPTION OF PORTFOLIO: 

Multi-disciplinary (Propulsion, Materials, Plasma and Electro-Energetic 

Physics, Chemistry, etc), multi-physics, multi-scale approach to 

complex space propulsion problems 

 

SUB-AREAS IN PORTFOLIO: 

•Coupled Materials and  Plasma Processes Far From Equilibrium   

with Sayir, Harrison (RSA), and Luginsland (RSE) 

•Novel Energetic Materials 

Multi-agency Coordination Committee: Petris/DTRA, Doherty/DHS, Anthenien/ARO, 
Bedford/ONR, Spowart, Hawkins/AFRL,  Palaszewski, Fletcher, Sayir/NASA, 

Pagoria/LLNL, Owrutsky/NRL, Birkan, Berman/AFOSR 

•Nonlinear, multi-scale, multi-physics high pressure combustion 

dynamics 

with Fahroo (RSL), Darema (CC), and Li (RSA)  
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Pulsed-powered high-density thermal plasmas 
Pressure ~ 10’s Mpa,  Temperature ~ 1-10 eV, Pulse time ~ 1 us – 1 ms 

railgun 

steady-state powered low-density plasmas  
~ 1015  #/cm3 

 

Characterize Surface / particle Interactions in Space 

Environment to mitigate contamination, charging, 

thermal control, undesired optical backgrounds 

Plasma/Electrode Interactions in High Current 

Density Environments (HPM sources) 
500kV, 10kA, GW-class EM fields, 100ns to 1ms 

Pulsed-powered relatively low-density 

plasmas,  ~ 1013-20  #/cm3 

Reverse field configuration 

relativistic  

magnetron 

Coupled Materials and  Plasma Processes Far 

From Equilibrium  
Kick-off meeting, NASA Glenn RC, 29-30 November 2011  

with Sayir, Harrison (RSA), and Luginsland (RSE) 

supercapacitor 

electric thrusters 

Satellite 

contamination 

/charging 
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steady-state powered low-density plasmas  

Understand and Model the interactions among the 

low pressure plasma, material, and energy flow 

TEAM 1 

Nasr M. Ghoniem(UCLA) 

Dan Goebel (JPL) 

Igor D. Kaganovich (Princeton) 

Yevgeny Raitses (Princeton) 

Shahram Sharafat (UCLA) 

Brian Williams (Ultramet) 

Richard Wirz (UCLA) 

TEAM 2 

Mitchell L. R. Walker (Georgia Institute of Technology) 

Alex Kieckhafer (Georgia Institute of Technology) 

Jud Ready (Georgia Tech Research Institute) 

Greg Thompson (University of Alabama) 

 

TEAM 3 

Manuel Martinez-Sanchez (MIT) 

Mark Cappelli (Stanford), 

Dennis Whyte (MIT-PSFC) 

What are the relationships between  surface  

architecture and secondary electron emission, and 

the damage energy fluence limits? 

What is the the effect of sheath instabilities, gas retention, and plasma-induced 

 structural modifications on global performance ? 

How to model plasma-material 

 interaction to characterize grain 

 detachment, sputtering leading 

 to plasma modifications ? 
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Quantum Mechanics 

Molecular Dynamics 

Raman Scattering 

Stark Broadening 

THz Interferometer 

Langmuir probes 

Multiple Scales in low-density, steady-state 

powered plasmas - Diagnostic Tools 
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Multi-scale Modeling of Materials 

B. Wirth, 2004 
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Example: 

Secondary Electron Emission: Good or Bad? 

•According to the Classic Fluid theory of Hobbs and Wesson, SEE is GOOD !!, leads to 

reduced wall erosion !!      Martinez – Sanchez / MIT (1997) 

 •Fluid theory assumes isotropic equilibrium (Maxwellian), 

and for walls with very high secondary electron 
emission, sheath collapses, sheat potential negligible !! 
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One Problem: can not 

predict the experimental 

results 
 

 

•WHY? 

•Plasma mean free path in thrusters are too high to achieve equilibrium (not enough  electron-electron collisions)  

•According to the fluid theory, maximum electron temperature does not change with discharge power due to huge 

electron heat flux to the wall 

fluid theory for high SEE 
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electron velocity 

distribution function 

Example: Secondary Electron Emission: Good or Bad? 

Model should account for Non-Equilibrium Effects !! 

Kinetic theory of Meezan and Cappelli / Stanford, High Secondary Electron Emission 

Depletes Tail of the Isotropic Electron Velocity Distribution 

Wall potential  

(non-Maxwellian) 

Wall potential  

(Maxwellian) 

•Sheath does not collapse, so Secondary Electron Emission has little effect on EROSION!  

•Solution of the Boltzmann Equation , ISOTROPIC 

•High Energy Electrons lost at wall 

•Isotropic, can not predict secondary electron emission beams, and sheath instabilities 
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Example: Secondary Electron Emission: Good or Bad? 

Particle-In-Cell (PIC) simulations suggests that the 

electron velocity distribution function is Anisotropic !! 

electron velocity 

distribution 

function 

sharp peaks are due 

to the Secondary 
Electron  Beams  
 

•Correctly predicts secondary electron emission beams, and sheath instabilities  

(Raitses, Kaganovich / Princeton) 
 
 

fluid theory for high SEE 
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kinetic theory 

•Secondary electron emission does not change the sheath potential 

•Secondary electron  beams cause instabilities near the sheath surface due to the “BUNCH UP”  
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Diamond 

Nosecone 

Diamond 

Outer 
Channel 

•Fundamental experiments verified high sputter resistance 

(GOOD!) 

•Diamond  (carbon) walls exaggerated plasma fluctuations – 
plasma very UNSTABLE  leading to VERY LOW THRUSTER 

EFFICIENCIES !!! 

Diamond Wall BHT-200 – Cappelli / Stanford  (Secondary Electron Emission is unknown) 

Walls Made From Carbon-Based Materials with 

Different Micro and Macro Structures Can Have Very 

Different Effect On Plasma and Sheath Instabilities 

Carbon Velvet Wall– Raitses, Fisch, Kaganovich (Princeton) (has ZERO Secondary Electron Emission) 

•Carbon velvet acts as almost ideal “black body” absorbing all 

incident particles preventing SEE 

•With non-emitting carbon velvet walls, thruster operates more 
stable (no SEE induced instabilities of the plasma-sheath, 

attenuated breathing oscillations) 

•With carbon velvet walls, the maximum electric field can be 2-3 

times larger than with ceramic walls 

•Same element, different structure and architecture      

different result! 

•Hypothesis: surface architecture affects performance! 
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2012 AFOSR SPRING REVIEW 
        

        

BRIEF DESCRIPTION OF PORTFOLIO: 

Multi-disciplinary (Propulsion, Materials, Plasma and Electro-Energetic 

Physics, Chemistry, etc), multi-physics, multi-scale approach to 

complex space propulsion problems 

 

SUB-AREAS IN PORTFOLIO: 

•Coupled Materials and  Plasma Processes Far From Equilibrium   

with Sayir, Harrison (RSA), and Luginsland (RSE) 

•Novel Energetic Materials 

Multi-agency Coordination Committee: Petris/DTRA, Doherty/DHS, Anthenien/ARO, 
Bedford/ONR, Spowart, Hawkins/AFRL,  Palaszewski, Fletcher, Sayir/NASA, 

Pagoria/LLNL, Owrutsky/NRL, Birkan, Berman/AFOSR 

•Nonlinear, multi-scale, multi-physics high pressure combustion 

dynamics 

with Fahroo (RSL), Darema (CC), and Li (RSA)  
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The Sciences 

State-of-the-Art 

Current S&T Effort 

Next Step 

Potential Impacts 

Novel Energetic Materials 
Workshop, 23-24 August 2011, Arlington, VA 

Discovery, understand, model, and exploit 

novel energetics materials to obtain: 

• Smart Responsive Materials 

• Nanoenergetics 

• Energetic Liquids, Oxidizers, and 

Binders 

 through Multiscale approach from 

 the atomistic to macroscale 

 

Frozen Propellants 

Nickel Aluminum 

Metal hydrides 

                                     Polystyrene coating 

                                    Ammonium Borane 

Hydrogen and 

hydrocarbon, 

Ionic Propellants 

ADN, HMX 

RDX with nano-Al 

encapsulated  

graphene sheets decorated 
with energetic organics and 
metallic nanoparticles for 
performance enhancement 

encapsulated nanoscale fuels 

/catalysts, nanoporous fuel / 

oxidizer composites for control 

surface functionalization , 

particle morphology, and 

defect reduction to decrease 

sensitivity 

nPt 

on graphene 

 

Ordered arrays of  

nano-porous silicone 

composites 

              

• Enhanced and new interactions with 
external stimuli for total control of 
reaction 

• Reduced sensitivity, increased safety, 
and better mobility 

• Enabled new missions 

•Mission tailored performance,  

and burning rate, switchable, 
smaller platforms 
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High speed OH PLIF reveals that coarse ammonium 

perchlorate burns much faster at high pressures  

•The diffusion flame structure changes from a jet-like to a lifted sheet-like diffusion flame as pressure is increased 

because of the relatively high local burning rate of the coarse AP 

1 atm:  Fluorescing coarse AP crystal is shown in red.  Dashed line is the 

surface 

6 Atm: The relatively fast burning crystal cannot be seen because it is below the 

surface. 

•High speed OH PLIF also reveals that: Coarse AP is not affected by catalyst (Fe2O3 and CuO) addition, Catalyst should 

be inside coarse AP in order to have a greater affect on performance 

State-of-the-Art 3-D simulation 

at high pressure (6 atm) 
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Nano-scale features affecting meso-scale behavior 

Example: mechanically activated Aluminum + 

Fluorocarbon mixture 
SEM/EDX (Scanning Electron 

Microscopy/Energy DIspersive X-ray 

Spectroscopy) 

Activated energetic particles 

Uniform composition and induced 

lattice defects (stored energy) 

Al + polycarbon 

monofluoride 

Powder Mixture 

 

 

158 

reactive interfaces, the high speed mode of reaction is not selectable during 

shear impacts of MA material.   

 

Figure 7.9.  Cartoon comparing scales of mixing for nanometric powders (A) and 
for MA samples (B). 

The extent of mixing of Ni and Al due to shear is also considered to be of 

extreme importance.  It was shown in tests using nanometric mixtures of Ni and 

Al that the fast mode of reaction initiates above and below the rounded plunger 

(Figure 7.3) at a lower velocity than it initiates at the center axis of the plunger 

(Figure 7.4).  The areas where shear strain of the bulk material will be highest 

are above and below the axis of the plunger.  .  It is known that shear stress is 

defined as 

1 sin 2
2 x y

 
Eq. 

7.1148 
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reactive interfaces, the high speed mode of reaction is not selectable during 
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Figure 7.9.  Cartoon comparing scales of mixing for nanometric powders (A) and 
for MA samples (B). 

The extent of mixing of Ni and Al due to shear is also considered to be of 

extreme importance.  It was shown in tests using nanometric mixtures of Ni and 

Al that the fast mode of reaction initiates above and below the rounded plunger 

(Figure 7.3) at a lower velocity than it initiates at the center axis of the plunger 

(Figure 7.4).  The areas where shear strain of the bulk material will be highest 

are above and below the axis of the plunger.  .  It is known that shear stress is 

defined as 

1 sin 2
2 x y

 
Eq. 

7.1148 

Mechanical 

Activation 

 Aluminum=blue, Fluorine=red 

 Carbon=green 

No mechanical activation 

mechanical activation 

DSC analysis of  

Al + polycarbon monofluoride 

 

5 micron 

• Fluorinated graphite encapsulated inside aluminum at nanoscales can provide 

increased combustion efficiency, reduced ignition temperature and agglomeration 
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Ammonia Borane (NH3BH3) as propellant additive, 

20% hydrogen by mass, can significantly increase 

rocket performance 

• Ammonia Borane added to hybrid fuel (paraffin), 

Isp,exp increased ~10% with 20% mass addition 

• Problem: Significant AB addition led to condensed phase product accumulation on fuel grain 

B
N

H

H

H

H

H
H

(BN)x(H)4x 
poly amino borane 

(BN)x(H)2x 
poly imino borane 

NH3BH3 

Condensed 

phase 

polymerization 

H2NBH2  + H2 HNBH    + H2 H2O, H2, HOBO, N2 

+ O2, OH, O 

w/o O2 (or poor mixing) 

and /or low heating rates 

Gas phase polymerization 

(BN)x(H)4x, (BN)x(H)2x 

hydrogen eliminations 
oxidation 

•MD simulations, kinetic calculations, and TGA/DSC and Confined Rapid Thermolysis/FTIR/MS experiments 

•Hypothesis: Smaller ammonia borane particles may resolve the problem 

Ea = 27 kcal/mol Ea = 81 kcal/mol 

• dehydrogenation of AB remains important in combustion processes at low temperature 

• polymerization processes have lower energy barriers than dehydrogenation  

• an ↑ in heating rate of 25x’s results in a ↓of 2.6x’s in mass accumulation in condensed-phase 



18 DISTRIBUTION A:  Approved for public release; distribution is unlimited 

2012 AFOSR SPRING REVIEW 
        

        

BRIEF DESCRIPTION OF PORTFOLIO: 

Multi-disciplinary (Propulsion, Materials, Plasma and Electro-Energetic 

Physics, Chemistry, etc), multi-physics, multi-scale approach to 

complex space propulsion problems 

 

SUB-AREAS IN PORTFOLIO: 

•Coupled Materials and  Plasma Processes Far From Equilibrium   

with Sayir, Harrison (RSA), and Luginsland (RSE) 

•Novel Energetic Materials 

Multi-agency Coordination Committee: Petris/DTRA, Doherty/DHS, Anthenien/ARO, 
Bedford/ONR, Spowart, Hawkins/AFRL,  Palaszewski, Fletcher, Sayir/NASA, 

Pagoria/LLNL, Owrutsky/NRL, Birkan, Berman/AFOSR 

•Nonlinear, multi-scale, multi-physics high pressure combustion 

dynamics 

with Fahroo (RSL), Darema (CC), and Li (RSA)  
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Nonlinear, multi-scale, multi-physics high 

pressure combustion dynamics 
Workshop, 15 June 2011, London;   Workshop, 23 August 2011, Arlington, VA 

 PARADIGM SHIFT IN SIMULATION: 

•Reduced Basis and Stochastic Modeling of a Complex High 

Pressure Combustion System to identify physical mechanisms 

responsible for the observed dynamical behavior 

CONTROLLER 

Computational domain=“Remainder” of engine 

Experimental domain 

Boundary conditions=f(r,t) 

Measured  

Pressure oscillation 

 p’(t) 

Closed-loop actively controlled real-time hybrid approach 

PARADIGM SHIFT IN VALIDATION: 
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waves structure in a high pressure toroidal 

cavity with concentrated heat release zones 

 
 

 

Zinn, Yang, Neumeier /Georgia Tech, and Law (Princeton) 

•Consider a toroidal cavity with a single combustion  point source. The acoustics is governed by the 

homogeneous wave equation except in the singular point.  

•Consider now the homogenous wave equation: 
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The compact heat release source 

modifies the out going waves 

•With combustion: 
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Initial conditions 

Right travelling wave f 

The increased mean flow due to the convecting 

standing waves causes spinning waves with increasing 

amplitude leading to instability 

If no tangential mean flow: spinning to a standing wave Initial conditions 

Left  travelling wave g 

•Explained experimental results obtained at NASA (Marcus Heidmann , 1969) 

 
Zinn, Yang, Neumeier /Georgia Tech 

TANGENTIAL MEAN FLOW due to recirculation near the injectors and inhomogeneous distribution of heat release, leading 

to convecting to a spinning wave Initial conditions 

Right travelling wave f 
Initial conditions 

Left  travelling wave g 
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Summary 

Space Propulsion Portfolio has become a platform for Multi-disciplinary  

activities in all scales: 

•Propulsion 

•Materials 

•Interface Sciences 

•Plasma and Electro-Energetic Physics  

•Applied and Computational Mathematics  

•Chemistry  

•and others… 

Will provide the scientific foundation to: 

•Reduce Fuel Demand in Space / more efficient power generation and 

energy utilization, increase spacecraft lifetime,  and reduce / control waste 

heat / provide novel design propellants / increase reliability and 

performance 

•understand and manage High Energy Density 

•Enable high-energy storage in ultra-capacitors with nanostructured 

components,  

•and others… 
 


